HOMEWORK GUIDELINES

Homework will be collected at the beginning of class on the dates indicated on the course schedule.

Late homework: Homework that is late (even one second late) will receive half credit if it is turned in before the start of the next class. If you cannot attend class the day homework is due, you should give your assignment to a friend to turn in or give it to the Building 20 Secretary to time stamp and put in my box.

I expect a professional job.

How Homework Is Graded

Each assignment is worth 3 points, and exceptional homework will be marked with a (+) and receive a bonus point. Please see the back of this page for more details.

Homework Requirements:

Homework must be

- done in pencil
- stapled (all assignments in one staple when they are turned in)
- neat and organized (The instructor’s aesthetics are the criteria for neatness.)
- in sequence, with each problem clearly identified and copied completely, including the instructions.
- Problems requiring explanations (as in “interpret the results”) must include complete explanations in complete sentences. “Yes” and “No” are not complete explanations.
- For application problems, a brief description of the problem may be used instead of copying the whole problem. All supporting work must be included.
- When you have used a calculator to solve the problem, a narration of all steps needed to complete the problem, not calculator key strokes, as well as a clear statement of the solution must be included.
- Abstract, symbolic problems (problems that do not involve words) must have all work shown vertically in columns with at least one inch of blank space between the columns. Please see the example below:

<table>
<thead>
<tr>
<th>For full credit, problems must look like this:</th>
<th>The following are examples that would receive no credit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solve for $x$.</td>
<td>1. Solve for $x$.</td>
</tr>
<tr>
<td>$3x + 5 = 44$</td>
<td>$x = 13$</td>
</tr>
<tr>
<td>$3x = 39$</td>
<td></td>
</tr>
<tr>
<td>$x = 13$</td>
<td></td>
</tr>
</tbody>
</table>

- All problems that involve graphs must be on graph paper. That is, the problem, the work needed to graph the equations, and the graph must be on the same page. The words “see graph” are not acceptable. See the Graphing Guidelines on the attached page.
<table>
<thead>
<tr>
<th>Mark</th>
<th>Precision</th>
<th>Applications</th>
<th>Professionalism</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Explanations are complete and insightful.</td>
<td>Analysis of the meaning of the solution is given.</td>
<td></td>
</tr>
</tbody>
</table>
| 3    | Problems are copied completely, including instructions.  
Work is shown vertically, using correct vocabulary and notation.  
All problems have been attempted.  
Fractions and rational expressions are shown vertically:  
like this: \( \frac{54}{31} \) or \( \frac{\sqrt{9-x^2}}{x+3} \),  
not like this: \( \frac{54}{31} \).  
Graphs are drawn following the graphing guidelines on the attached page. | Problems show the five steps of problem-solving:  
1. Familiarize  
2. Translate  
3. Carry Out  
4. Check  
5. State (in a complete sentence) | Handwriting is clear and easy to read and there are at most two columns of problems per page.  
Problems involving graphs are on the same page as the graphs that illustrate them. |
| 2    | All problems are attempted, but some instructions are missing.  
Most work is shown vertically.  
Some vocabulary or notation is correct | Most of the five steps are shown, and it is clear how the answer was found. | Handwriting is clear and easy to read and there are at most two columns of problems per page.  
Problems involving graphs are on the same page as the graphs that illustrate them. |
| 1    | Most vocabulary or notation is incorrect.  
Only a few problems have been attempted.  
Graphs are present, but they do not meet the standards in the graphing guidelines on page 7. | Incomplete process. | Handwriting is difficult to read and problems are too close together to be easily distinguished.  
Problems involving graphs are on a different page from the page where the graph is shown. |
| 0    | Problems are not copied.  
Work is not shown. | Problems are not copied.  
Work is not shown.  
Solutions are not written in full sentences. | Work is not done in pencil.  
Pages are not stapled.  
Edges from spiral notebooks are not trimmed. |
TCC Mathematics Department
Student Graphing Guidelines

Students in all math classes are expected to follow the graphing guidelines below on homework and test questions requiring an accurate sketch.

AXES:
- Axes and any straight lines are drawn in with a straight edge.
- If the scale is anything other than one square = one unit, it must be clearly indicated on each axis.
- For word problems, each axis is labeled with an appropriate letter and with the meaning and units of the axis. (See Graph B.)

ACCURATE:
- Graph paper is used.
- Instructors will set a clear convention for distinguishing a graph that terminates from one that extends infinitely. Students will adhere to the convention set by their instructor.
- The vertex of a parabola is rounded, not pointed. (See Graph C).
- Asymptotes are drawn with a dashed line. Graphs approaching asymptotes appear to get closer and closer, not touching the asymptote and not pulling away from the asymptote. (See Graph D.)

CLEAR:
- The coordinates of important points: intercepts, maximum or minimum points, vertices, and points of intersection, are clearly labeled on the axes or the point itself is labeled with an ordered pair.
- If multiple equations are graphed on a single set of axes, each graph should be labeled with its equation.
- Separate problems should be graphed on separate axes.
- The size of the graph is helpful: it is neat, big, and dark enough to be easily read and understood.